The Algebraic Interpretation of Classical and Intuitionistic Quantifiers

Dana S. Scott
Craig Fest
May 2007

Please Note:
The presentation had many verbal comments and explanations that are not recorded in the slides.

What is a Partial Ordering?

\[x \leq x \]
\[x \leq y \land y \leq z \Rightarrow x \leq z \]
\[x \leq y \land y \leq x \Rightarrow x = y \]

What is a Lattice?

\[0 \leq x \leq 1 \]
\[x \lor y \leq z \Leftrightarrow x \leq z \land y \leq z \]
\[z \leq x \land y \Leftrightarrow z \leq x \land z \leq y \]
What is a Complete Lattice?
\[\bigvee_{i \in I} x_i \leq y \iff (\forall i \in I) \ x_i \leq y \]
\[y \leq \bigwedge_{i \in I} x_i \iff (\forall i \in I) \ y \leq x_i \]

Note:
\[\bigwedge_{i \in I} x_i = \bigvee \{ y \mid (\forall i \in I) \ y \leq x_i \} \]

What is a Heyting Algebra?
\[x \land y \leq z \iff x \leq y \rightarrow z \]

What is a Boolean Algebra?
\[x \land y \leq z \iff x \leq y \rightarrow z \]
\[\neg \neg x = x, \text{ where } \neg x = x \rightarrow 0 \]

Every Heyting Algebra is Distributive
\[x \land (y \lor z) = (x \land y) \lor (x \land z) \]

Every Complete Heyting Algebra is Completely Distributive
\[x \land \bigvee_{i \in I} y_i = \bigvee_{i \in I} (x \land y_i) \]

Some Abbreviations
Ha = Heyting Algebra
cHa = Complete Heyting Algebra
Ba = Boolean Algebra
cBa = Complete Boolean Algebra
An Important Theorem

Theorem. Every complete lattice which is \((\land \lor)\)-distributive is a cHa.

Hint: \(y \rightarrow z = \lor \{ x \mid x \land y \leq z \} \)

Corollary. A non-empty \((\land \lor)\)-closed subset of a cHa is also a cHa.

Rasiowa-Sikorski’s Motto

Die Mathematiker sind eine Art Franzosen: redet man zu ihnen, so übersetzen sie es in ihre Sprache und dann ist es alsobald ganz etwas Anderes.

—J. W. von Goethe

Semantical Completeness

A sentence \(\Phi \) is provable in intuitionistic first-order logic if, and only if, \(\langle \Phi \rangle = 1 \) whatever the interpretation in a cHa.

The proof from left to right is obvious!
Generic Completeness
There is (relative to the choice of language) a **single** cHa (cBa) such that if $\langle \Phi \rangle = 1$ for this algebra, then Φ is provable in intuitionistic (classical) first-order logic.

The proof goes through the Lindenbaum algebra and the MacNeille completion of lattices.

MacNeille Completion
There are many (equational) varieties between Ha’s and Ba’s.
However, the completeness process only puts us in the **same** variety in the two extreme cases. But, it **does work** for the extension to **modal** S4 Ha’s and Ba’s.

Modal S4 Algebras
\[\Box 1 = 1 \]
\[\Box \Box x = \Box x \leq x \]
\[\Box (x \land y) = \Box x \land \Box y \]

The second two can be combined:
\[\Box x = \lor \{ y \mid y = \Box y \leq x \} \]

Boole vs. Heyting
Theorem. For every cBa B, there is a cHa H such that $B = \{ \neg \neg x \mid x \in H \}$.

Theorem. For every cHa H, there is an S4 cBa B^\Box such that $H = \{ \Box x \mid x \in B^\Box \}$.
Relation Algebras

For every cBa B, the power $B^{\mathbb{N} \times \mathbb{N}}$ becomes a relation algebra via:

$$(R;S)(i,j) = \bigvee_{k \in \mathbb{N}} (R(i,k) \land S(k,j))$$

$R^\sim(i,j) = R(j,i)$

$1'(i,j) = \bigvee \{1 \mid i = j \}$

So, what about cHa’s?

MY UNANSWERABLE QUESTION

Why did not the Warsaw/Berkeley school consider Boolean-valued models of higher-order logic (and set theory) already in 1954/55?

Another Title for This Lecture

Ten Years Too Late!

The End